gpal_logo_new  Gas Path Analysis Ltd
State of the Art Performance Monitoring systems for Gas Turbines, Process Compressors & CHP systems

Reduce your Total Ownership Costs with GPAL technology solutions
Understand how factors such as ambient conditions and performance deterioration affect gas turbine ownership cost with GPAL state of the art virtual gas turbines This site does not require a SSL certificate because all sensitive data is entered via PayPal, which is a secure site
Gas Path Analysis Ltd specializes in developing software applications for the performance monitoring of gas turbines, process compressors and combined heat and power (CHP) systems. GPA technology solutions are driven towards reducing Total Ownership Costs of gas turbines and compression systems.
 
KEY OBJECTIVES:
Move to Performance monitoring provides warning of problems in advance and reduces unscheduled shutdowns.
Move to Optimization of gas compression systems will result in lower fuel costs and reduce green house gas emissions.
Move to Gas compression modeling also determines the capacity of your compression system with and without performance deterioration and helps reduce CAPEX when increased capacity is required.
Move to Proverbially, to be forewarned is to be forearmed and is the aim of GPAL software solutions.

GPAL Solutions and Services to Reduce Ownership Costs of your Gas Turbines and Compressors
On line Systems Off Line Systems
 XPGTn Gas Turbine Performance Monitoring and Diagnostics

 XINSTn Detect changes in gas turbine fuel quality on-line using GPAL XINSTn

 XCOMB Gas Turbine Combustion Diagnostics

 XCREEP Turbine Creep Life Cycle Analysis.

 XEM Gas Turbine Emissions Monitoring.

 XCOMP Process Compressor Performance Monitoring and Diagnostics 

 RB211-22 Case Study
 Benefits of Model Based Analysis 

 GASCOMP Optimize your gas compression system.

 XWASH  Optimize your engine wash to minimize your lost revenue.

 COOPS Optimize the performance of Combined Heat and Power (CHP) plants.
 
GAS TURBINE SIMULATORS GPAL launches Version 2 of their gas turbine simulators for better understanding of performance and operations of gas turbines. Version 2 includes detailed simulation of Turbine Inlet Cooling (TIC) technologies to augment/enhance the performance of industrial gas turbines.
 
Services:- Optimize your gas turbine and process compressor performance


Gas Turbine Performance Monitoring and Diagnostics System (XPGTn)
DETECTING DAMAGE AT ENGINE COMPONENT LEVEL

The objective of the system is to detect the onset of damage at engine component level so as to arrest/reduce damage. Measured parameters are compared with their expected values and their differences used to detect changes in component characteristics. These changes or deviations are known as Fault Indices.

The measured and derived engine parameters using gas path analysis techniques when faults are present (actual performance) and when no faults are present (design performance) are shown in Figure 1. Where the actual performance does not match the design performance the question then arises as to what is the cause of the performance deviation.

By calculating Fault Indices the components that have suffered damage are shown in Figure 2. XPGTn series is a powerful tool for on condition and predictive based maintenance and is applicable to all gas turbines






gpa1s
Figure 1. RB 211-24. Where actual performance does not match the design performance, GPAL software helps identify the reasons for the performance deviation.

gpa2s
Figure 2.Measured parameters are compared with their expected values and their differences used to detect changes in component characteristics.
By calculation of the Fault Indices, the components that have suffered damage are shown.
Gas Turbine fuel flow measurement Monitoring and Diagnostics System (XINSTn)
DETECT FUEL QUALITY CHANGE ON LINE

Fuel cost is a significant part of the life cycle cost of gas turbines. Often operators are unable to check the quality of their fuel, namely whether the Lower Heating Value (LHV) is within specification. Lower LHV is due to poor fuel quality is costing the gas turbine operators millions of dollars in increased fuel costs.

Now you can detect fuel quality changes on-line and therefore arrest such increases in fuel costs using GPAL's XINSTn monitoring product. This is achieved by pattern matching Fault Indices, which indicate faults in gas turbines and measurements such as fuel flow errors.

xinst1spng
Figure shows fault index patterns when fuel flow flow errors exists or if fuel quality has changed. Click the for further details
Gas turbine combustion diagnostics XCOMB
DETECTION OF COMBUSTION PROBLEMS

Monitoring the Exhaust Gas Temperature spread (EGT Spread) is a good means of detecting combustion problems. However, current systems do not give alarms on the expected EGT spread and profiles therefore often missing the onset of damage resulting from combustion problems.

XCOMB overcomes this problem by not only plotting the actual spread and profile but also displays the expected EGT spread and profile. Again, Fault Indices are used which represent the deviation of the EGT spread based on the actual and expected values. The Fault Index is used to generate alarms when it exceeds alarm levels. Therefore XCOMB is an essential part of any predictive maintenance system for gas turbines. Click the XCOMB icon on the right for a detailed display of XCOMB.
gpa3s
XCOMB display of EGT patterns. Click for further details
Turbine creep life analysis XCREEP

The Turbine creep life used is dependent on many factors (e.g. power output, ambient conditions and performance deterioration). Without proper monitoring it is difficult to assess the actual creep life used.

XCREEP evaluates turbine creep life used based on actual operating conditions. A significant increase in Mean Time between Overhauls (MTBO) can result by monitoring the creep life on actual operating conditions.

The example (Figure 4) shows at least a threefold increase in MTBO by monitoring the creep life actual operating conditions. The display from XCREEP shows the actual life used when performance deterioration is present, the life used based on fired hours and the life used if no performance deterioration is present. The manufacturer’s estimated Creep Life is indicated in the fired life line in figure on the right..
gpa4s
The display from XCREEP shows the actual life used when performance is present, the life used based on fired hours and the life used if no performance deterioration is present.
Gas Turbine Emissions Monitoring XEM

Parametric Emissions Models (PEMs):

Many parametric models have been proposed and validated in predicting emissions. However, these models often need engine measurements, which are difficult or almost impossible to measure on an engine operating on a site. Such measurements often refer to combustion air flow and combustion exit temperature (turbine entry temperature). Gas path analysis techniques do derive these measurements and use them in the computation of Fault Indices. Therefore gas path analysis and parametric models offer a cost-effective solution for determining gas turbine emissions.

xem1peng
The display of data validating NOx emissions using PEMs
Process Gas Compressor Performance Monitoring XCOMP

Process gas compressors are responsible for delivering gas at a required pressure
(e.g. in exploration and production (E&P) it is natural gas). Performance deterioration of gas compressors have an equally adverse  impact on production and hence on revenue. GPAL’s XCOMP is state of the art gas compressor performance monitoring solution where the change in compressor characteristic due to change in suction conditions and gas composition is accurately accounted for when determining performance deterioration.

A set of measurements are required to carry out compressor performance analysis. These usually are compressor inlet and discharge pressures, temperatures, flows and speed. Additionally a gas composition of a mixture of gases is also required. In E&P the natural gas composition of can vary significantly and expensive chromatograph s are required to determine gas composition. However, depending of the process where the compression is required, the gas composition from chromatograph may be incorrect. GPAL’s XCOMP can work with inlet and discharge density and accurately to determine compressor performance. Of course density measurements are required and this can be measured using Coriolis flow meters, which are now really available.

xcomppng
Typical compressor characteristic display in XCOMP

2013 Gas Path Analysis Ltd